Well-posedness for a Higher Order Nonlinear Schrödinger Equation in Sobolev Spaces of Negative Indices

نویسنده

  • XAVIER CARVAJAL
چکیده

We prove that, the initial value problem associated to ∂tu+ iα∂ 2 x u+ β∂ x u+ iγ|u|u = 0, x, t ∈ R, is locally well-posed in Hs for s > −1/4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness of the Fifth Order Kadomtsev-Petviashvili I Equation in Anisotropic Sobolev Spaces with Nonnegative Indices

In this paper we establish the local and global well-posedness of the real valued fifth order Kadomstev-Petviashvili I equation in the anisotropic Sobolev spaces with nonnegative indices. In particular, our local well-posedness improves SautTzvetkov’s one and our global well-posedness gives an affirmative answer to SautTzvetkov’s L-data conjecture.

متن کامل

Sharp Global Well-posedness for a Higher Order Schrödinger Equation

Using the theory of almost conserved energies and the “I-method” developed by Colliander, Keel, Staffilani, Takaoka and Tao, we prove that the initial value problem for a higher order Schrödinger equation is globally wellposed in Sobolev spaces of order s > 1/4. This result is sharp.

متن کامل

Global Well-posedness of the Cauchy Problem of a Higher-order Schrödinger Equation

We apply the I-method to prove that the Cauchy problem of a higher-order Schrödinger equation is globally well-posed in the Sobolev space Hs(R) with s > 6/7.

متن کامل

A Priori Bounds and Weak Solutions for the Nonlinear Schrödinger Equation in Sobolev Spaces of Negative Order

Solutions to the Cauchy problem for the one-dimensional cubic nonlinear Schrödinger equation on the real line are studied in Sobolev spaces H, for s negative but close to 0. For smooth solutions there is an a priori upper bound for the H norm of the solution, in terms of the H norm of the datum, for arbitrarily large data, for sufficiently short time. Weak solutions are constructed for arbitrar...

متن کامل

Existence and Uniqueness Theory for the Fractional Schrödinger Equation on the Torus

We study the Cauchy problem for the 1-d periodic fractional Schrödinger equation with cubic nonlinearity. In particular we prove local well-posedness in Sobolev spaces, for solutions evolving from rough initial data. In addition we show the existence of global-in-time infinite energy solutions. Our tools include a new Strichartz estimate on the torus along with ideas that Bourgain developed in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004